【觀念整理】
1. 能量守恆&力學能守恆
力學能守恆:位能轉換成動能的例子 |
在一個封閉的系統中能量必守恆,能量可能以各種形式存在
比如動能、重力位能、彈力位能、熱能...等等。
『原來的總能量 = 後來的總能量』
若一封閉系統中只有保守力作功,則力學能守恆。
同樣地,原來的總能會等於後來的總能,更可以寫成以下:
『原來總動能 + 原來總位能 = 後來總動能 + 後來總位能』
2. 動量守恆
前後總動量守恆 |
動量守恆的條件是系統不受外力的作用,或所受外力合力為零。
『原來的總動量 = 後來的總動量』
不過動量是種向量,所以在討論動量守恆的時候最好分方向討論
比如說下面這個例子:
一質量為2m的球以(√2/2)v的速度延正x方向等速運動,途中炸裂
為兩個等質量的小球,且分別與原行進方向夾角45度的方向離開
請問兩小球速度為何?
好的直接公布答案,兩小球以v速離開。
有些人會困惑怎麼可能會是v速?
原來總動量 = 2m*(√2/2)v = √2mv
後來總動量 = mv + mv = 2mv
一個是根號2mv另一個是2mv,這樣不就不守恆了嗎?
問題就在於後來總動量這部分的計算是不能這樣相加的
因為動量是種向量,兩小球的方向並不是延著同一直線
所以最好是分開成X方向分量與Y方向分量討論
正確應如下:
[X部分] √2mv (原來x方向總動量) = mv*cos45° + mv*cos-45° (後來x方向總動量)
[Y部分] 0 (原來y方向總動量) = mv*sin45° + mv*sin-45° (後來y方向總動量)
好的接下來是題型的部分
【各個題型】
1. 請問m脫離滑車瞬間,滑車速度VM為何?
只有保守力作功,依力學能守恆列出式子1
系統無外力作用,依動量守恆列出式子2
解出兩式子就可以得到VM
2. m以v速延光滑平面撞擊一嵌著彈簧的M
設彈力常數為k,求彈簧的最大壓縮量為何?
本提觀念運用到
『總能 = 質心動能 + 內能』
當彈簧擁有最大壓縮量的時候,M與m皆以相同速度向前移動
此時的速度就是質心速度,所以可以使用質心動能運算
而內能在這裡就是彈簧的彈力位能。
最後將式子列出就可以得到彈簧的長度壓縮量(也就是最大壓縮量)
3. 質量為3m的A木塊置於光滑平面上
質量為m的B木塊置於A的上方,且與A的接觸面摩擦係數為0.5
求 (1) 假設B不會從A木塊上掉落,當B相對停止於A木塊時的速度?
(2) 承上題,B相對停止於A時所花的時間為何?
(3) 若A木塊長度L且不計B木塊長度,L至少要多長B才不至掉落?
第一小題:B木塊相對於A木塊靜止時,A、B兩木塊此時的運動速度相同
也就是整個系統以質心速度VC移動,所以算出VC就等於此時B木塊的速度
第二小題:摩擦力使得B木塊於A上滑行時有一個與運動方向相反的加速度
接著依照F=ma可以求得加速度大小,再利用運動學公式求得所花的時間
第三小題:這題有幾個方法一個是利用能量守恆
『B木塊動能 (也就是一開始的總能) = A、B質心動能 + 摩擦力作功 (內能) 』
另一個方法就是繼續利用已知的資訊 (B初速v、末速VC、加速度a)
加上運動學公式得到L的長度。
4. 接著看到星體運動,設一恆星M質量遠大於繞行行星m
m以v等速圓周運動繞行半徑r,若給予m一能量使其脫離M的重力場
到達無窮遠處,問此能量(脫離能)為何? 脫離速度為何?
此時系統總能 = 動能 + 位能
=> 總能E = (1/2)mv^2 + -GMm/r
而兩星球距無窮遠處時的總能為"零"
原本總能是E,獲得一個脫離能Ee之後總能變為"零"
則可以得到這個關係: E + Ee = 0 ; Ee = -E
總能E當中行星動量的 v 可以利用F=ma求得,為什麼?
F是誰?m是誰?a又是誰的加速度?
F指的是行星繞恆星時的向心力(也是萬有引力)
因此m就是行星質量,且a就是向心加速度
知道了v是多少,我們就可以得到E同時也知道Ee
最後再由 Ee = (1/2)mVe^2求得脫離速度Ve
在第五題開始之前讓我們先把第四題整理一下
幾個重點:
(1) 現在的總能 + 某個能量 = 新的系統總能 →一樣是能量守恆概念
比如這題就是 " 現在的總能 + 脫離能 = 全部脫離到無窮遠處能量(零) "
如果現在有三顆球,給予能量後只有一顆脫離到無窮遠,另兩個固定
則寫成這樣 " 三球能量 + 給予能量 = 兩球能量 "
(2) 作星體繞行運動題目時,可利用F=ma求得其中一些資訊
其中的F是星球間的萬有引力,m是繞行圓周運動的行星質量
a是此行圓周運動行星的向心加速度
而向心加速度看得是 與圓心間的運動情形
好的我們看一下第5題
雙星運動 |
在給予一脫離能Ee後,兩星球脫離彼此重力場達無窮遠處
求Ee = ?
一樣 總能 + Ee = 0 ; 求得總能就知道Ee
總能 = 動能 + 位能
先求位能: U = -(Gm^2)/ 2*r
(注意分母是 2r ,因為兩星球距離就是2r)
再求動能: Ek = (1/2)mv^2 + (1/2)mv^2
問題是v會是多少呢? 一樣用F=ma
萬有引力 = 行星質量*向心加速度
(Gm^2)/[(2r)^2] = m*(v^2/r)
上面這個式子當中 (Gm^2)/[(2r)^2] 分母之所以是 (2r)^2 是因為這邊取的距離平方是"兩星球間的萬有引力"自然就是兩者的距離也就是直徑2r
另外向心加速度中v^2/r 分母只有r而不是2r,是因為向心加速度
看的是行星與圓心間的半徑,值得注意。
最後把所有資訊整理就可以得到答案了。
這次的整理先到這邊, "守恆"概念貫穿本章節
問自己幾個問題:什麼守恆?誰守恆?等號兩邊該放誰?
只要前面幾個式子列對了,後面題目不會太困難
還有牽扯到幾個以前學的概念,像是向心加速度的公式
找幾個題目練習並且思考一下自己為什麼寫錯或者為什麼寫對
對於本章節就會更加熟悉。
沒有留言:
張貼留言